Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.735
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732154

RESUMO

The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Vesículas Extracelulares , Proteínas de Choque Térmico HSP47 , Miócitos Cardíacos , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Doenças Cardiovasculares/metabolismo , Feminino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pessoa de Meia-Idade , Animais , Proteínas de Choque Térmico HSP47/metabolismo , Ratos , Canal de Potássio ERG1/metabolismo , Idoso , Adulto , Canais de Potássio Éter-A-Go-Go/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/sangue
2.
PLoS One ; 19(1): e0287206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181028

RESUMO

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the outer loop of the channel and substitution at position 428 from serine to proline (S428P), respectively. Heterologous expression of P632L and S428P into HEK cells produced no hERG current compared to the wild type (WT). Moreover, the co-transfection of WT and P632L yielded no hERG current; however, the co-transfection of WT and S428P yielded partial hERG current. Action potentials were prolonged in a complete or partial blockade of hERG current from computer simulations which was more severe in Purkinje than ventricular myocytes. Three dimensional simulations revealed a higher susceptibility to reentry in the presence of hERG current blockade. Our experimental findings suggest that both P632L and S428P mutations may impair the KCNH2 gene. The Purkinje cells exhibit a more severe phenotype than ventricular myocytes, and the hERG current blockade renders the ventricles an arrhythmogenic substrate from computer modeling.


Assuntos
Canal de Potássio ERG1 , Síndrome do QT Longo , Adolescente , Feminino , Humanos , Lactente , Potenciais de Ação , Simulação por Computador , Células Epiteliais , Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Mutação
3.
Biomed Pharmacother ; 171: 116138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237352

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease characterized by severe pulmonary fibrosis, for which there is an urgent need for effective therapeutic agents. Mefloquine (Mef) is a quinoline compound primarily used for the treatment of malaria. However, high doses (>25 mg/kg) may lead to side effects such as cardiotoxicity and psychiatric disorders. Here, we found that low-dose Mef (5 mg/kg) can safely and effectively treat IPF mice. Functionally, Mef can improve the pulmonary function of IPF mice (PIF, PEF, EF50, VT, MV, PENH), alleviating pulmonary inflammation and fibrosis by inhibiting macrophage activity. Mechanically, Mef probably regulates the Jak2/Stat3 signaling pathway by binding to the 492HIS site of Potassium voltage-gated channel subfamily H member 2 (KCNH2) protein in macrophages, inhibiting the secretion of macrophage inflammatory and fibrotic factors. In summary, Mef may inhibit macrophage activity by binding to KCNH2 protein, thereby slowing down the progress of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mefloquina , Humanos , Camundongos , Animais , Mefloquina/uso terapêutico , Macrófagos/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Fibrose , Transdução de Sinais , Bleomicina/farmacologia , Canal de Potássio ERG1/metabolismo
4.
Pflugers Arch ; 476(1): 87-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934265

RESUMO

Zebrafish provide a translational model of human cardiac function. Their similar cardiac electrophysiology enables screening of human cardiac repolarization disorders, drug arrhythmogenicity, and novel antiarrhythmic therapeutics. However, while zebrafish cardiac repolarization is driven by delayed rectifier potassium channel current (IKr), the relative role of alternate channel transcripts is uncertain. While human ether-a-go-go-related-gene-1a (hERG1a) is the dominant transcript in humans, expression of the functionally distinct alternate transcript, hERG1b, modifies the electrophysiological and pharmacologic IKr phenotype. Studies of zebrafish IKr are frequently translated without consideration for the presence and impact of hERG1b in humans. Here, we performed phylogenetic analyses of all available KCNH genes from Actinopterygii (ray-finned fishes). Our findings confirmed zebrafish cardiac zkcnh6a as the paralog of human hERG1a (hKCNH2a), but also revealed evidence of a hERG1b (hKCNH2b)-like N-terminally truncated gene, zkcnh6b, in zebrafish. zkcnh6b is a teleost-specific variant that resulted from the 3R genome duplication. qRT-PCR showed dominant expression of zkcnh6a in zebrafish atrial and ventricular tissue, with low levels of zkcnh6b. Functional evaluation of zkcnh6b in a heterologous system showed no discernable function under the conditions tested, and no influence on zkcnh6a function during the zebrafish ventricular action potential. Our findings provide the first descriptions of the zkcnh6b gene, and show that, unlike in humans, zebrafish cardiac repolarization does not rely upon co-assembly of zERG1a/zERG1b. Given that hERG1b modifies IKr function and drug binding in humans, our findings highlight the need for consideration when translating hERG variant effects and toxicological screens in zebrafish, which lack a functional hERG1b-equivalent gene.


Assuntos
Canais de Potássio Éter-A-Go-Go , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Filogenia , Coração/fisiologia , Arritmias Cardíacas/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo
5.
Br J Pharmacol ; 181(7): 987-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37740435

RESUMO

BACKGROUND AND PURPOSE: Drug-induced reduction of the rapid delayed rectifier potassium current carried by the human Ether-à-go-go-Related Gene (hERG) channel is associated with increased risk of arrhythmias. Recent updates to drug safety regulatory guidelines attempt to capture each drug's hERG binding mechanism by combining in vitro assays with in silico simulations. In this study, we investigate the impact on in silico proarrhythmic risk predictions due to uncertainty in the hERG binding mechanism and physiological hERG current model. EXPERIMENTAL APPROACH: Possible pharmacological binding models were designed for the hERG channel to account for known and postulated small molecule binding mechanisms. After selecting a subset of plausible binding models for each compound through calibration to available voltage-clamp electrophysiology data, we assessed their effects, and the effects of different physiological models, on proarrhythmic risk predictions. KEY RESULTS: For some compounds, multiple binding mechanisms can explain the same data produced under the safety testing guidelines, which results in different inferred binding rates. This can result in substantial uncertainty in the predicted torsade risk, which often spans more than one risk category. By comparison, we found that the effect of a different hERG physiological current model on risk classification was subtle. CONCLUSION AND IMPLICATIONS: The approach developed in this study assesses the impact of uncertainty in hERG binding mechanisms on predictions of drug-induced proarrhythmic risk. For some compounds, these results imply the need for additional binding data to decrease uncertainty in safety-critical applications.


Assuntos
Arritmias Cardíacas , Canais de Potássio Éter-A-Go-Go , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Incerteza , Arritmias Cardíacas/induzido quimicamente , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/efeitos adversos
6.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769355

RESUMO

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
7.
Int J Mol Med ; 53(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063256

RESUMO

The Kv11.1 potassium channel encoded by the Kcnh2 gene is crucial in conducting the rapid delayed rectifier K+ current in cardiomyocytes. Homozygous mutation in Kcnh2 is embryonically lethal in humans and mice. However, the molecular signaling pathway of intrauterine fetal loss is unclear. The present study generated a Kcnh2 knockout rat based on edited rat embryonic stem cells (rESCs). Kcnh2 knockout was embryonic lethal on day 11.5 of development due to a heart configuration defect. Experiments with human embryonic heart single cells (6.5­7 weeks post­conception) suggested that potassium voltage­gated channel subfamily H member 2 (KCNH2) plays a crucial role in the development of compact cardiomyocytes. By contrast, apoptosis was found to be triggered in the homozygous embryos, which could be attributed to the failure of KCNH2 to form a complex with integrin ß1 that was essential for preventing the process of apoptosis via inhibition of forkhead box O3A. Destruction of the KCNH2/integrin ß1 complex reduced the phosphorylation level of AKT and deactivated the glycogen synthase kinase 3 ß (GSK­3ß)/ß­catenin pathway, which caused early developmental abnormalities in rats. The present work reveals a basic mechanism by which KCNH2 maintains intact embryonic heart development.


Assuntos
Canal de Potássio ERG1 , Cardiopatias Congênitas , Animais , Feminino , Humanos , Camundongos , Gravidez , Ratos , Desenvolvimento Embrionário , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiopatias Congênitas/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Miócitos Cardíacos/metabolismo
8.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003453

RESUMO

Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias.


Assuntos
Canais de Potássio Éter-A-Go-Go , Bloqueadores dos Canais de Potássio , Humanos , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Miócitos Cardíacos , Potenciais de Ação
9.
Clinics (Sao Paulo) ; 78: 100285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37783170

RESUMO

INTRODUCTION: Long QT Syndrome (LQTS) is an inherited disease with an abnormal electrical conduction system in the heart that can cause sudden death as a result of QT prolongation. LQT2 is the second most common subtype of LQTS caused by loss of function mutations in the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene. Although more than 900 mutations are associated with the LQTS, many of these mutations are not validated or characterized. METHODS AND RESULTS: Sequencing analyses of genomic DNA of a family with LQT2 identified a putative mutation. i.e., KCNH2(NM_000238.3): c.3099_3112del, in KCNH2 gene which appeared to be a definite pathogenic mutation. The family pedigree information showed a gender difference in clinical features and T-wave morphology between male and female patients. The female with mutation exhibited recurring ventricular arrhythmia and syncope, while two male carriers did not show any symptoms. In addition, T-wave in females was much flatter than in males. The female proband showed a positive reaction to the lidocaine test. Lidocaine injection almost completely blocked ventricular arrhythmia and shortened the QT interval by ≥30 ms. Treatment with propranolol, mexiletine, and implantation of cardioverter-defibrillators prevented the sustained ventricular tachycardia, ventricular fibrillation, and syncope, as assessed by a 3-year follow-up evaluation. CONCLUSIONS: A putative mutation c.3099_3112del in the KCNH2 gene causes LQT2 syndrome, and the pathogenic mutation mainly causes symptoms in female progeny.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Masculino , Feminino , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Fatores Sexuais , Mutação/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Síncope , Lidocaína
10.
Cardiovasc Res ; 119(15): 2522-2535, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37739930

RESUMO

AIMS: Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS: The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION: Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Miócitos Cardíacos , Potenciais de Ação , Éteres , Canal de Potássio ERG1/genética
11.
J Chem Inf Model ; 63(15): 4888-4899, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37504578

RESUMO

hERG is a voltage-gated potassium channel involved in the heart contraction whose defections are associated with the cardiac arrhythmia Long QT Syndrome type 2. The activator RPR260243 (RPR) represents a possible candidate to pharmacologically treat LQTS2 because it enhances the opening of the channel. However, the molecular detail of its action mechanism remains quite elusive. Here, we address the problem using a combination of docking, molecular dynamics simulations, and network analysis. We show that the drug preferably binds at the interface between the voltage sensor and the pore, enhancing the canonical activation path and determining a whole-structure rearrangement of the channel that slightly impairs inactivation.


Assuntos
Canais de Potássio Éter-A-Go-Go , Coração , Humanos , Canais de Potássio Éter-A-Go-Go/metabolismo , Piperidinas , Arritmias Cardíacas/tratamento farmacológico , Canal de Potássio ERG1
12.
Molecules ; 28(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446837

RESUMO

Erythromycin is one of the few compounds that remarkably increase ether-a-go-go-related gene (hERG) inhibition from room temperature (RT) to physiological temperature (PT). Understanding how erythromycin inhibits the hERG could help us to decide which compounds are needed for further studies. The whole-cell patch clamp technique was used to investigate the effects of erythromycin on hERG channels at different temperatures. While erythromycin caused a concentration-dependent inhibition of cardiac hERG channels, it also shifted the steady-state activation and steady-state inactivation of the channel to the left and significantly accelerated the onset of inactivation at both temperatures, although temperature itself caused a profound change in the dynamics of hERG channels. Our data also suggest that the binding pattern to S6 of the channels changes at PT. In contrast, cisapride, a well-known hERG blocker whose inhibition is not affected by temperature, does not change its critical binding sites after the temperature is raised to PT. Our data suggest that erythromycin is unique and that the shift in hERG inhibition may not apply to other compounds.


Assuntos
Eritromicina , Canais de Potássio Éter-A-Go-Go , Eritromicina/farmacologia , Temperatura , Cisaprida/metabolismo , Cisaprida/farmacologia , Coração , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/farmacologia
13.
Mol Pharmacol ; 104(4): 164-173, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419691

RESUMO

The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Canais de Potássio Éter-A-Go-Go/metabolismo , Canal de Potássio ERG1/genética , Células HEK293 , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
14.
Europace ; 25(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37386841

RESUMO

AIMS: Patients with particular mutations of type-2 long QT syndrome (LQT2) are at an increased risk for malignant arrhythmia during fever. This study aimed to determine the mechanism by which KCNH2 mutations cause fever-induced QT prolongation and torsades de pointes (TdP). METHODS AND RESULTS: We evaluated three KCNH2 mutations, G584S, D609G, and T613M, in the Kv11.1 S5-pore region, identified in patients with marked QT prolongation and TdP during fever. We also evaluated KCNH2 M124T and R269W, which are not associated with fever-induced QT prolongation. We characterized the temperature-dependent changes in the electrophysiological properties of the mutant Kv11.1 channels by patch-clamp recording and computer simulation. The average tail current densities (TCDs) at 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller and less increased with rising temperature from 35°C to 40°C than those for WT, M124T, and R269W. The ratios of the TCDs at 40°C to 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller than for WT, M124T, and R269W. The voltage dependence of the steady-state inactivation curve for WT, M124T, and R269W showed a significant positive shift with increasing temperature; however, that for G584S, WT+D609G, and WT+T613M showed no significant change. Computer simulation demonstrated that G584S, WT+D609G, and WT+T613M caused prolonged action potential durations and early afterdepolarization formation at 40°C. CONCLUSION: These findings indicate that KCNH2 G584S, D609G, and T613M in the S5-pore region reduce the temperature-dependent increase in TCDs through an enhanced inactivation, resulting in QT prolongation and TdP at a febrile state in patients with LQT2.


Assuntos
Síndrome do QT Longo , Torsades de Pointes , Humanos , Torsades de Pointes/diagnóstico , Torsades de Pointes/genética , Simulação por Computador , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação , Proteínas de Ligação a DNA , Canal de Potássio ERG1/genética
15.
Cardiology ; 148(4): 310-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231805

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied the HEK293 cell line stably expressing hERG-wild-type channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel, and the whole-cell patch clamp was utilized to record hERG current (IhERG). RESULTS: HCQ reduced the mature hERG protein in a time- and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment with brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION: HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.


Assuntos
COVID-19 , Hidroxicloroquina , Humanos , Tratamento Farmacológico da COVID-19 , Canal de Potássio ERG1/genética , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Hidroxicloroquina/farmacologia , Canais Iônicos , Simulação de Acoplamento Molecular , Mutação
16.
Basic Clin Pharmacol Toxicol ; 133(2): 179-193, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37177881

RESUMO

Post-operative atrial fibrillation (POAF) is the most common complication after cardiac surgery. Despite implementation of several pharmacological strategies, incidence of POAF remains at approximately 30%. An adenovirus vector encoding KCNH2-G628S has proven efficacious in a porcine model of AF. In this preclinical study, 1.5 × 1010 or 1.5 × 1012 Ad-KCNH2-G628S vector particles (vp) were applied to the atrial epicardium or 1.5 × 1012 vp were applied to the whole epicardial surface of New Zealand White rabbits. Saline and vector vehicle served as procedure controls. Animals were followed for up to 42 days. Vector genomes persisted in the atria up to 42 days, with no distribution to extra-thoracic organs. There were no adverse effects attributable to test article on standard toxicological endpoints or on blood pressure, left atrial or ventricular ejection fractions, electrocardiographic parameters, or serum IL-6 or troponin concentrations. Mononuclear infiltration of the myocardium of the atrial free walls of low-dose, but not high-dose animals was observed at 7 and 21 days, but these changes did not persist or affect cardiac function. After scaling for heart size, results indicate the test article is safe at doses up to 25 times the maximum proposed for the human clinical trial.


Assuntos
Fibrilação Atrial , Procedimentos Cirúrgicos Cardíacos , Coelhos , Humanos , Animais , Suínos , Distribuição Tecidual , Átrios do Coração , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Miocárdio , Complicações Pós-Operatórias/etiologia , Canal de Potássio ERG1
17.
Bioorg Med Chem ; 85: 117276, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037115

RESUMO

Many non-nucleoside human cytomegalovirus (HCMV) inhibitors have been reported in patent and scientific literature, however, none have reached commercialization despite the urgent need for new HCMV treatments. Herein we report select compounds from different templates that all had low micromolar human ether-à-go-go (hERG) ion channel IC50 values. We also describe a series of pyrroloquinoline derivatives that were designed and synthesized to understand the effect of various substitution on human cytomegalovirus (HCMV) polymerase activity, antiviral activity, and hERG inhibition. These results demonstrated that hERG inhibition can be significantly altered based on the substitution on this template. An HCMV inhibitor with low hERG inhibition and reduced cytotoxicity is also described. The results suggest substitution can be fine tuned for the non-nucleoside polymerase inhibitors to reduce hERG inhibition and maintain HCMV antiviral potency.


Assuntos
Antivirais , Citomegalovirus , Humanos , Antivirais/farmacologia , Éter/farmacologia , Canais de Potássio Éter-A-Go-Go , Cardiotoxicidade , Etil-Éteres/farmacologia , Nucleotidiltransferases , Éteres/farmacologia , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/farmacologia
18.
Circ Genom Precis Med ; 16(2): e003726, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071726

RESUMO

BACKGROUND: Long-QT syndrome (LQTS) is characterized by QT prolongation and increased risk for syncope, seizures, and sudden cardiac death. The majority of LQTS stems from pathogenic mutations in KCNQ1, KCNH2, or SCN5A. However, ≈10% of patients with LQTS remain genetically elusive. We utilized genome sequencing to identify a novel LQTS genetic substrate in a multigenerational genotype-negative LQTS pedigree. METHODS: Genome sequencing was performed on 5 affected family members. Only rare nonsynonymous variants present in all affected family members were considered. The candidate variant was characterized functionally in patient-derived induced pluripotent stem cell and gene-edited, variant corrected, isogenic control induced pluripotent stem cell-derived cardiomyocytes. RESULTS: A missense variant (p.G6S) was identified in ALG10B-encoded α-1,2-glucosyltransferase B protein. ALG10B (alpha-1,2-glucosyltransferase B protein) is a known interacting protein of KCNH2-encoded Kv11.1 (HERG [human Ether-à-go-go-related gene]). Compared with isogenic control, ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes showed (1) decreased protein expression of ALG10B (p.G6S, 0.7±0.18, n=8 versus control, 1.25±0.16, n=9; P<0.05), (2) significant retention of HERG in the endoplasmic reticulum (P<0.0005), and (3) a significantly prolonged action potential duration confirmed by both patch clamp (p.G6S, 531.1±38.3 ms, n=15 versus control, 324.1±21.8 ms, n=13; P<0.001) and multielectrode assay (P<0.0001). Lumacaftor-a compound known to rescue HERG trafficking-shortened the pathologically prolonged action potential duration of ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes by 10.6% (n=31 electrodes; P<0.001). CONCLUSIONS: Here, we demonstrate that ALG10B-p.G6S downregulates ALG10B, resulting in defective HERG trafficking and action potential duration prolongation. Therefore, ALG10B is a novel LQTS-susceptibility gene underlying the LQTS phenotype observed in a multigenerational pedigree. ALG10B mutation analysis may be warranted, especially in genotype-negative patients with an LQT2-like phenotype.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação , Genótipo
19.
BMC Bioinformatics ; 24(1): 51, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792990

RESUMO

KCNH2 encodes the human ether-a-go-go-related gene (hERG) potassium channel and is an important repolarization reserve for regulating cardiac electrical activity. Increasing evidence suggests that it is involved in the development of various tumours, yet a thorough analysis of the underlying process has not been performed. Here, we have comprehensively examined the role of KCNH2 in multiple cancers by assessing KCNH2 gene expression, diagnostic and prognostic value, genetic alterations, immune infiltration correlations, RNA modifications, mutations, clinical correlations, interacting proteins, and associated signalling pathways. KCNH2 is differentially expressed in over 30 cancers and has a high diagnostic value for 10 tumours. Survival analysis showed that high expression of KCNH2 was associated with a poor prognosis in glioblastoma multiforme (GBM) and hepatocellular carcinoma (LIHC). Mutations and RNA methylation modifications (especially m6A) of KCNH2 are associated with its expression in multiple tumours. KCNH2 expression is correlated with tumour mutation burden, microsatellite instability, neoantigen load, and mutant-allele tumour heterogeneity. In addition, KCNH2 expression is associated with the tumour immune microenvironment and its immunosuppressive phenotype. KEGG signalling pathway enrichment analysis revealed that KCNH2 and its interacting molecules are involved in a variety of pathways related to carcinogenesis and signal regulation, such as the PI3K/Akt and focal adhesion pathways. Overall, we found that KCNH2 and its interaction molecular are expected to be immune-related biomarkers for cancer diagnosis and prognosis evaluation, and are potential regulatory targets of singalling pathways for tumour development due to their significant role in cancers.


Assuntos
Canais de Potássio Éter-A-Go-Go , Neoplasias , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/genética , RNA , Microambiente Tumoral
20.
PLoS One ; 18(2): e0280656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730356

RESUMO

Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non-small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Ratos , Gencitabina , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Regulação para Baixo , Cardiotoxicidade/etiologia , Células HEK293 , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA